H(t)=-16t^2-81t-5

Simple and best practice solution for H(t)=-16t^2-81t-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2-81t-5 equation:



(H)=-16H^2-81H-5
We move all terms to the left:
(H)-(-16H^2-81H-5)=0
We get rid of parentheses
16H^2+81H+H+5=0
We add all the numbers together, and all the variables
16H^2+82H+5=0
a = 16; b = 82; c = +5;
Δ = b2-4ac
Δ = 822-4·16·5
Δ = 6404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6404}=\sqrt{4*1601}=\sqrt{4}*\sqrt{1601}=2\sqrt{1601}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(82)-2\sqrt{1601}}{2*16}=\frac{-82-2\sqrt{1601}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(82)+2\sqrt{1601}}{2*16}=\frac{-82+2\sqrt{1601}}{32} $

See similar equations:

| 0.6=x/7 | | n+120+120=180 | | h/8=26 | | 5=k−53 | | -6(m-94)=6 | | 2n+120=180 | | c/11=10 | | n+100+100=180 | | 23=r/11 | | 31r=372 | | n+40+40=180 | | 3r=522 | | 31v=186 | | n+70+70=180 | | 2(x-3=x-1+7 | | 20(x-5)=-80 | | 6=–6(m−94) | | j/27=31 | | 2n+70=180 | | w-13.7-13.7=22.8=22.8 | | X-9x+15=3 | | v/29=25 | | 124=31w | | n+80+80=180 | | 2n+80=180 | | 14=n/14 | | 3x-2x+9=11 | | 100+100=n=180 | | 2q=30 | | 2n+100=180 | | 2n+100=80 | | 60=3f |

Equations solver categories